

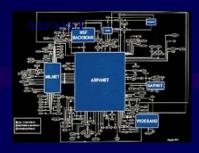
maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments a arters Services, Directorate for Inforty other provision of law, no person	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE JUN 2009		2. REPORT TYPE		3. DATES COVERED 00-00-2009 to 00-00-2009			
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
DARPA Bridging t	5b. GRANT NUMBER						
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
	•	odress(es) Agency,3701 N Fairf	ax	8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited					
	44. Presented at the	European Commar art, Germany on 8-1		ommand Sci	ence and		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	37	RESPUNSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Who/What is DARPA?

The Advanced Research Projects Agency (ARPA) – which came to be known as DARPA in 1972 when its name changed to the Defense Advanced Research Projects Agency – emerged in 1958 as part of a broad reaction to a singular event – the launching by the Soviet Union of the Sputnik satellite on Oct. 4, 1957.



60's

70's

90's

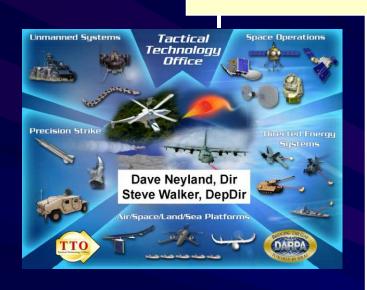
00's

DARPA at a glance

DARPA's Mission

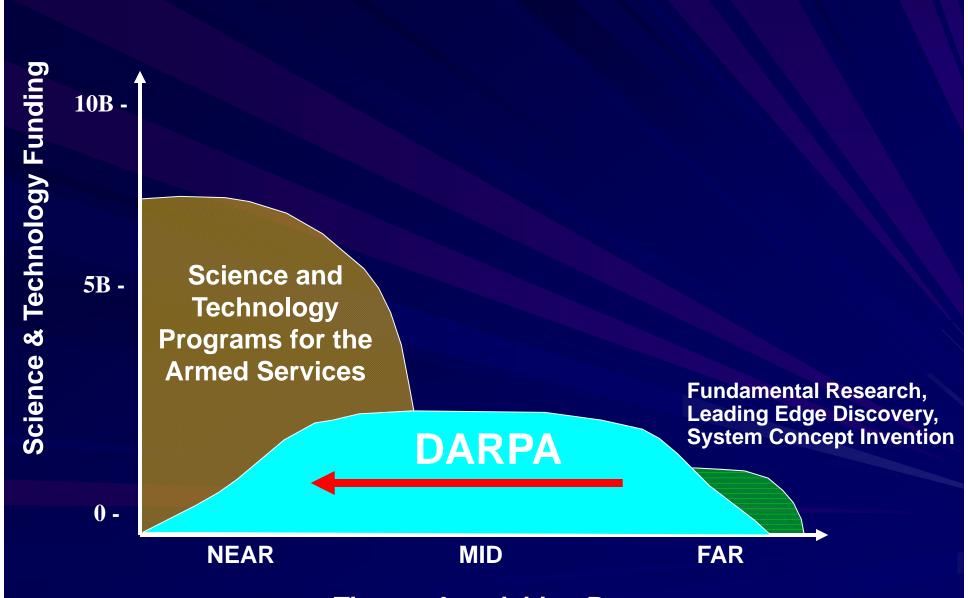
 Prevent technological surprise for the United States and to create technological surprise for our adversaries.

DARPA's Charter


- Radical innovation
- Solving hard technical problems
- Revolutionary capabilities for national security

DARPA Technical Offices

Acting Director, Bob Leheny



DARPA Role in Science and Technology

Distribution Statement A: Approved for public release; distribution in the to Acquisition Program

DARPA's Strategic Thrusts

Investments Today for Future Capabilities

- Robust, Secure, Self-Forming Networks
- Detection, Precision ID, Tracking, & Destruction of Elusive Targets
- Urban Area Operations
- Advanced Manned & Unmanned Systems
- Detection, Characterization, & Assessment of Underground Structures
- Space
- Increasing the Tooth to Tail Ratio
- Bio-Revolution
- Core Technologies (Materials/Electronics/Information Technology)

References for DARPA Projects

Secretary of Defense

Quadrennial Defense Review

Strategic Planning Guidance 2008 – 2013

Combatant Commanders Integrated Priority

Lists

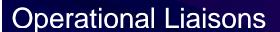
USSOCOM CONPLAN 7500-02 - Global

War on Terrorism

Joint Program Decision Memorandums

Meetings and Briefs throughout DoD

Distribution Statement A: Approved for public release; distribution unlimited



Operational Liaisons - Transition Agents



Special Assistant / Tech Transition

- Mr. Chris Earl
 Liaison to Special Operations Command
 - Ms. Kathy MacDonald

- Col TC Moore, USMC
- COL Valerie Jacocks, USA
- CAPT John Murphy, USN
- Col Will Reese, USAF
- Mr. Fred Schnarre, NGA

Rapid Reaction Support

Bar Armor - Counter RPG

Boomerang

WASP

Tactical Iraqi Language Training

Command Post of the Future

Hand-Held Translator

Broadcast Translation

Sniper Rifle

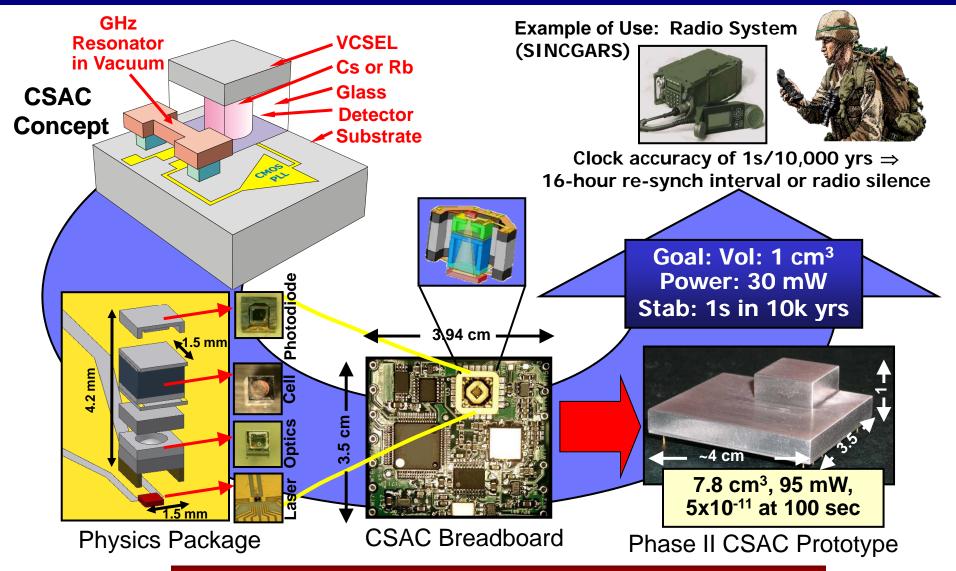
Water Disinfection
Pen

TIGR

Cooling Glove
Distribution Statement A: Approved for public release; distribution unlimited

Current DARPA Programs That support EUCOM/AFRICOM needs

- Operating in GPS-denied environment
 - Chip-Scale Atomic Clock (CSAC)
 - Robust Surface Navigation/Sub Surface Navigation (RSN/SSN)
 - Micro Inertial Navigation Technology (MINT)
- Long endurance, persistent surveillance
 - Integrated Sensor is the Structure (ISIS)
- Networking/SA for Distributed Operations
 - UltraVis

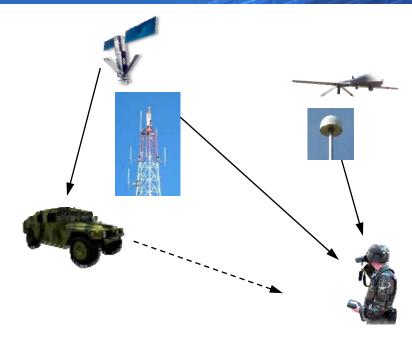

Current DARPA Programs That support EUCOM/AFRICOM needs

- Operating in GPS-denied environment
 - Chip-Scale Atomic Clock (CSAC)
 - Robust Surface Navigation/Sub Surface Navigation (RSN/SSN)
 - Micro Inertial Navigation Technology (MINT)

Integrated Microsystem: Chip Scale Atomic Clock

Precision Time for Every Radio and Network Node

Robust Surface Navigation (RSN)



Why RSN?

- GPS does not work well indoors or in urban canyons
- GPS can be jammed
- Multiple path propagation corrupts positioning accuracy

Goals

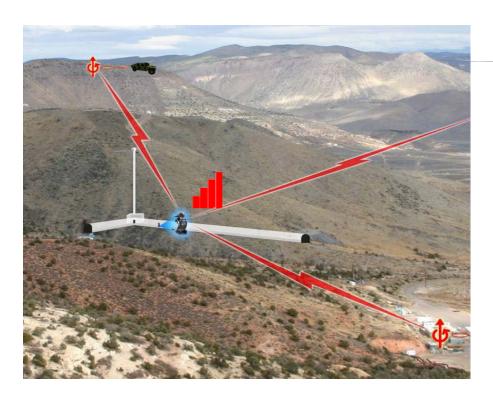
- GPS-equivalent capability in GPS-denied environments
- Navigation using signals-of-opportunity
 - Space and terrestrial communications, broadcast, and navigational signaling systems
- Development of beacons for improved versatility when SoOP are limited or nonexistent
- Seamless adaptation of receiver to any available signals (GPS, Beacons, or SoOP)

Technical Challenges

- Mitigation and/or exploitation of multipath
- Ability to operate when line-of-sight (LOS) propagation is not available
- Characterization of and synchronization with available SoOP/beacons

RSN Provides Robust Geolocation and Navigation in GPS-Denied Environments

Slides 12 & 13 DISTAR case # 10389 Stephen M Urban, 5/26/2009 SMU2



Sub-Surface Navigation (SsN)

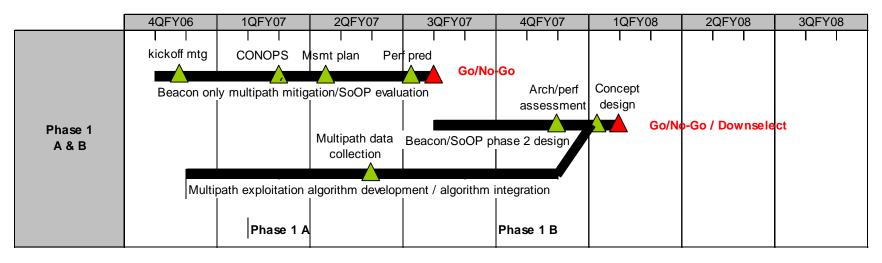
Program Objectives

Provide the U.S. war fighter with the ability to geo-locate and navigate in environments below the surface of the Earth, where GPS is not available.

Goals

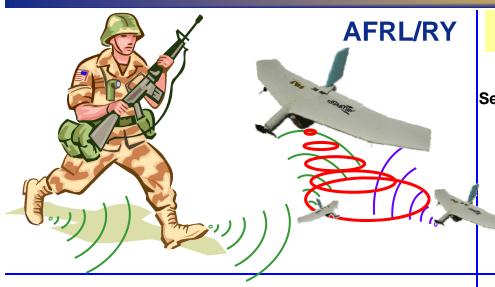
- Provide navigation capability in underground environment, where GPS is not available
- Evaluate the use of signals-of-opportunity (SoOP) for navigation
- Develop beacons for improved versatility when SoOP are limited or non-existent

Technical Challenges


- Signal penetration into underground environment limits operational range
- Signal distortion through non-homogeneous ground limits accuracy and robustness
- Seamless operation above- and below-ground requires additional complexity
- Development of readily deployable receivers and through-the-earth transmitters that do not burden the warfighter

Seamless Underground Navigation and Geo-Location for the War Fighter

RSN Schedule



	1QFY08	2QFY08	3QFY08	4QFY08	1QFY09	2QFY09	3QFY09	4QFY09
Phase 2	kickoff mtg	CDR & tes	st plan review	Program	status reviews		Test readiness review	\$ystem perf. / prototype sys doc / Demo transition Final report
						1		


we are here

Micro Inertial Navigation Technology (MINT)

Carnegie Mellon University

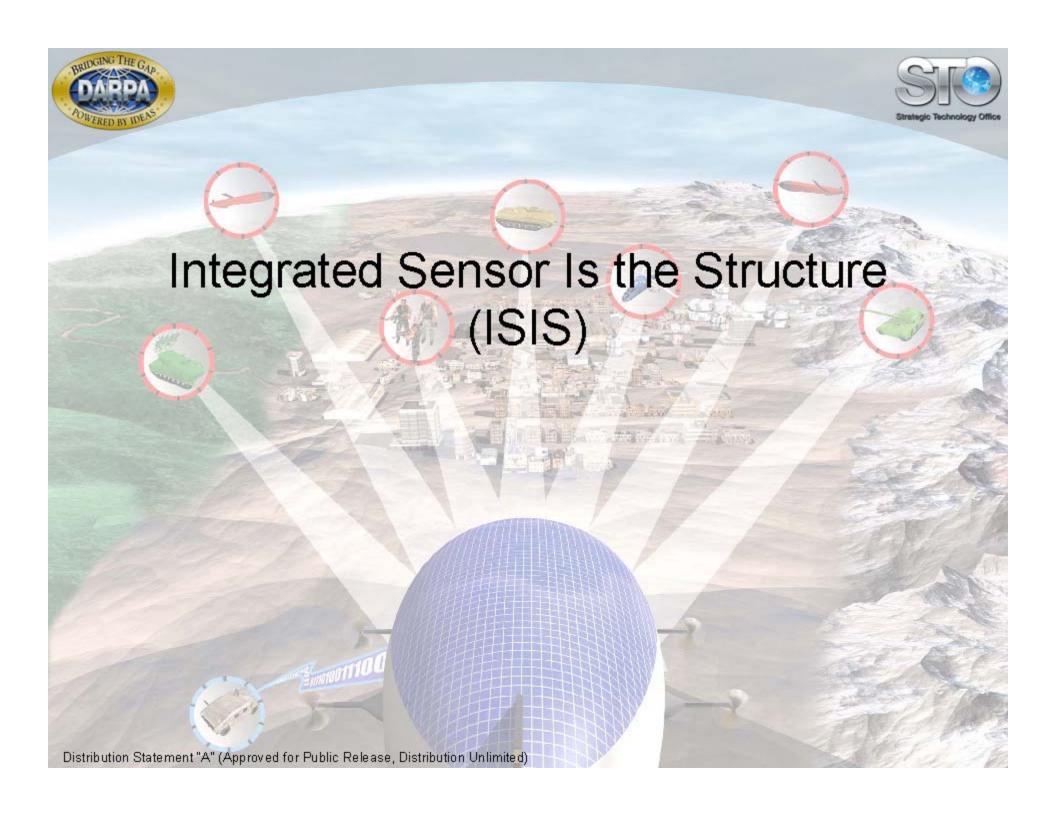
DARPA/MTO funded

As of 2 Apr 09

OBJECTIVES/PAYOFF

- Enable long term (hours to days) GPS denied precise navigation for dismounted soldiers & rel. nav. for swarms of UAVs:
 - Sensor placement in small compartments, such as the shoe sole or small UAVs
 - Low power compatible with energy harvesting
 & reduced weight of batteries
 - Wide temperature range & shock environment
 - Goals of navigation accuracy during walking of
 1 m position error after 10 hours and size of
 1 cc and power of 5 mW, not including the IMU

APPROACH

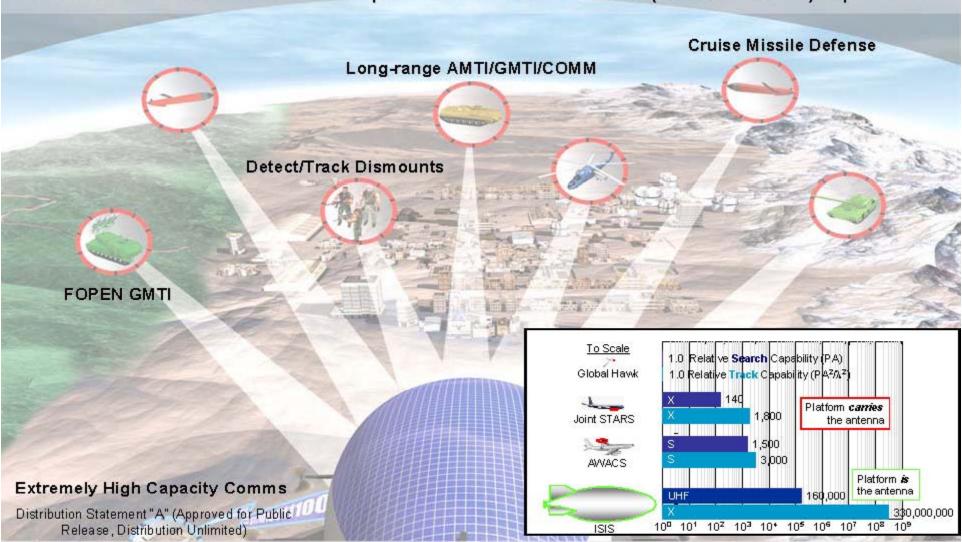

- Develop & Demonstrate Micro- and Nanoscale navigation sensors that use secondary inertial variables, e.g. relative velocity measurements (Radio Frequency, etc)
- Integrate and Demonstrate System: Nav sensors with MEMS Inertial Measurement Unit/Magnetometer using Zero Velocity Updates and Kalman Filter

Slide 17

DISTAR case # 13418 Stephen M Urban, 5/26/2009 SMU1

Current DARPA Programs That support EUCOM/AFRICOM needs

- Long endurance, persistent surveillance
 - Integrated Sensor is the Structure (ISIS)
 - Vulture
 - Rapid Eye

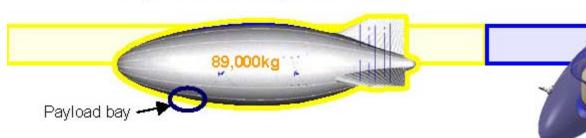


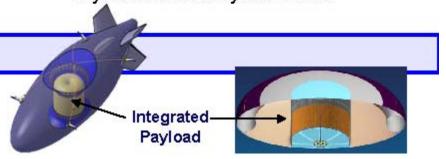
Integrated Sensor Is the Structure (ISIS)

Simultaneous AMTI/GMTI Operation via Dual Band (UHF/X-Band) Aperture

Global Relocation <10 days – 600km Sensor Radius – No In-Theater Ground Support 10+ year Operational Lifetime – 99% Availability for 1 year

Integrated Airship-Radar




Conventional

Payload: 2-3% of system mass

ISIS New Paradigm

Payload: >30% of system mass

Enabling Technologies	DARPA ISIS Accomplishments	
Hull Material	Improved lifetime by 10x while reducing fabric mass 4x over state-of-the-art	
Active-Array Antenna	Performance from size, not power	
	Removed heavy high power electronics, cooling	
	Removed structure: Flexible panels bonded onto pressure vessel	
	Low-power Transmit/Receive modules based on low-cost "cell phone" technology	
Power System	Solar-regenerative power with fuel cells instead of batteries Airspeed: 60 knot sustained, 100 knot sprint	

ISIS Critical Technologies

Addressing critical hardware technology needs

Achieved

- Low areal-density advanced hull material
 - Areal density ≤100 g/m²
 - Matrix glass transition temperature (T_G) ≤ -90°C
 - Fiber strength-to-weight ≥ 1000 kN·m/kg
 - Fiber retains >85% strength at 5 years

- 90.6 g/m² -101°C
- 1274 kN-m/kg
- >85% at 22 years

- Lightweight, low-power density AESA
 - Areal density ≤ 2 kg/m²
 - Power consumption ≤ 5.0 W/m² on receive
 - Bonded to hull material

- 1.8 kg/m²
- 4.7 W/m²
 - Passed

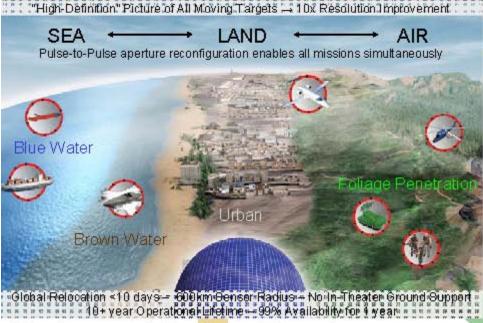
- Extremely low-power Transmit-Receive modules
 - FOM ≥1x10⁴ W-²

1.1 x 10⁴ W-2

- Demonstrated TRL5 (MTTF > 10⁶ Hours)
 - MTTF > 1.98x10⁶ Hours
- Novel power systems for stratospheric airships
 - Demonstrate 400 W-hr/kg regenerative system

779 W-hr/kg

Jower



Single Integrated Picture

600km

300 km

Complete Air Picture

- AWACS (70's) and E-2 (60's) designed for hard targets of their day
- ISIS is designed for the theoretical limit at the radar horizon
 - Single-platform search, track, and fire-control

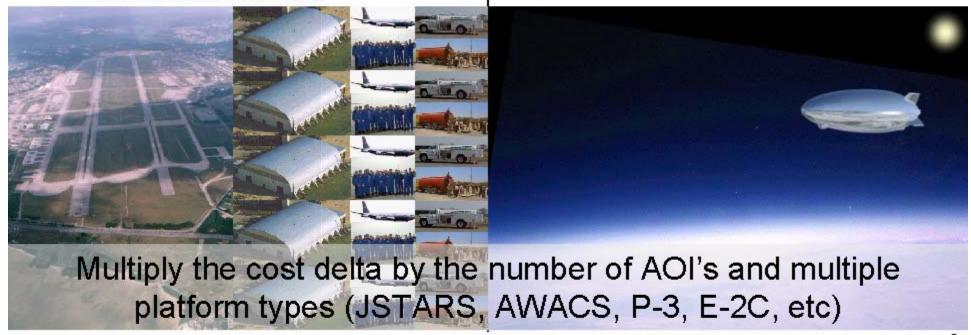
Unobscured Surface Target

 Joint STARS (70's) designed for tanks in the Fulda Gap

- ISIS is designed for dismounts across the entire Line-of-Sight
 - LSRS-like resolution
 - 300km @ 3° grazing angle
 - 600km line-of-sight

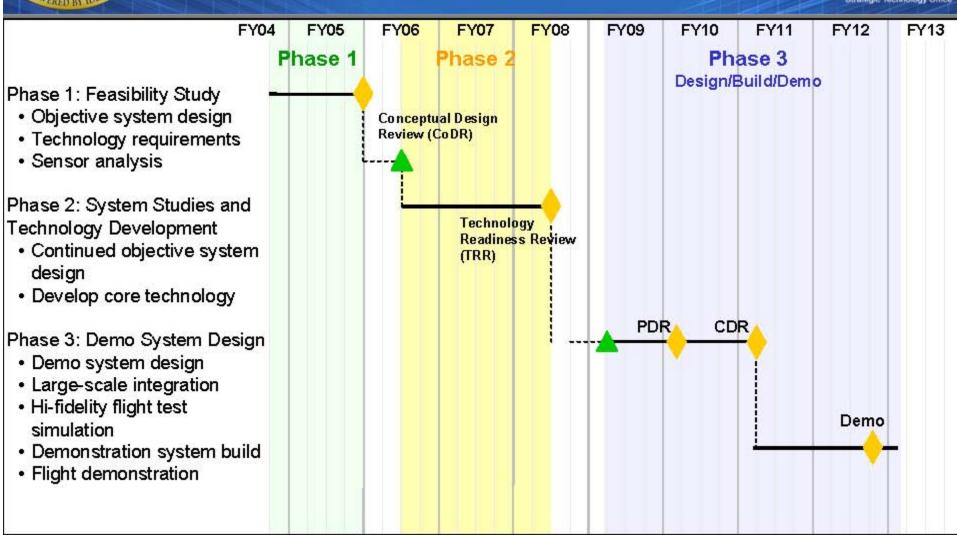
Wide-Area Foliage Penetration GMTI

 Joint STARS precision across an extremely large operational area



No Forward-Based Logistics

- Forward-deployed aircraft-based ISR
 - Local air base
 - Multiple aircraft for single orbit
 - Air crews
 - Ground crews
 - Fuel supplies
 - Maintenance facilities


- CONUS-deployed ISIS
 - Unmanned
 - Launched from U.S. locations
 - Global deployment in 10 days
 - Regenerative fuel sources
 - Ten-year service life
 - Permanent CONUS ground station

Schedule

VULTURE

Program Goals and Objectives

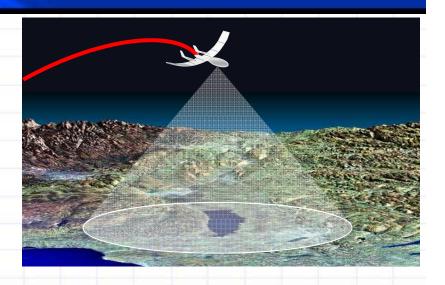
 Develop a high altitude, long endurance UAV that can maintain a 1000 lb, 5kW payload on-station continuously for 5 years

Technical Approach

- Satellite design paradigm with ultra reliability requirements
- Collecting, storing and dispersing solar electric energy
- High Lift/Drag (~40) low mass fraction structures
- Efficient electric propulsion

Military Utility

- 24 / 7 / 366 persistence
- Very high resolution capability without large aperture sensors needed from space
- Reduced power required in pseudo-satellite role
- Flexible re-tasking/responsiveness
- No depot or foreign basing
- 'Zero Maintenance foot print'
- Pre-deploy eliminates weather launch issues/reduces response time
- Decreased Cost and fleet size



Rapid Eye

Program Objective and Goals

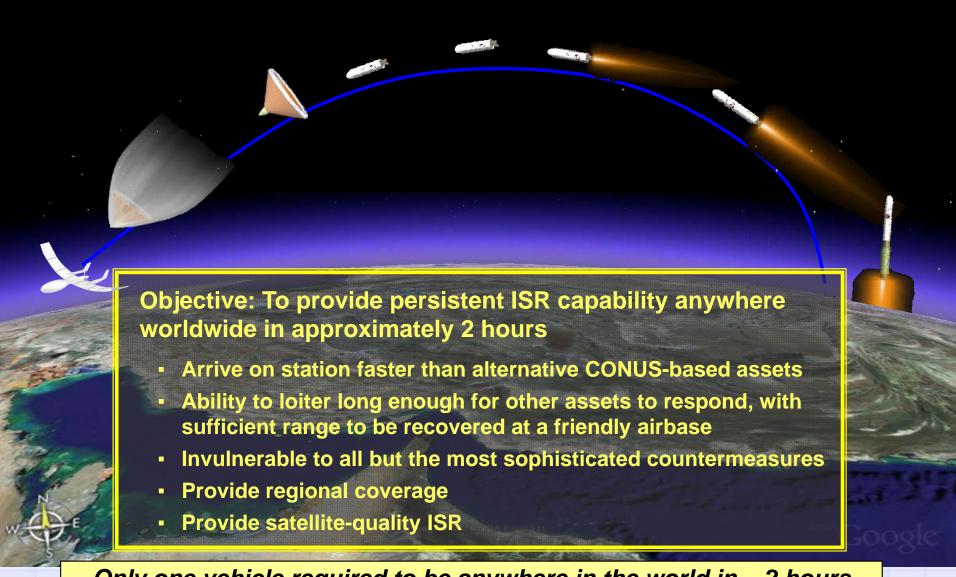
- Develop and demonstrate the ability to deliver a persistent intelligence surveillance and reconnaissance (ISR) capability anywhere on the globe within 1-2 hours
- Program goals:
 - Worldwide-delivery of ISR capability from alert pad < 2 orbits (~ 2 hours using existing solid rocket)
 - Use only two START-compliant launch sites
 - Aircraft time-on-station > 7 hours
 - Aircraft payload > 500 lbs, 5 kW

Technical Approach

• Conduct military utility and system-level design trade studies, and derive a technology maturation plan to culminate in a system flight test demonstration

Technical Challenges

- Volume of stowed aircraft, deployable wings
- Deceleration at high altitude using inflatable aero-shield
- Propulsion suitable for >15 hrs at high altitude


Military Utility

- Provide an extremely rapid deployable ISR/C2 platform to surge capability until lower cost assets can be positioned
- Provide capability to enter denied airspace while avoiding border air defense Distribution Statement A: Approved for public release; distribution unlimited

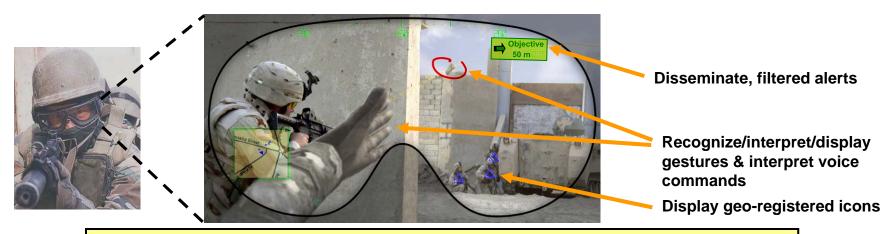
Rapid Eye Bridging the ISR Deployment Gap

Only one vehicle required to be anywhere in the world in ~ 2 hours

Current DARPA Programs That support EUCOM/AFRICOM needs

- Networking/SA for Distributed Operations
 - UltraVis

ULTRA-Vis ... A revolution in Small Unit C²


Problem: Small unit coordination inadequate to conduct NLOS, Distributed Operations

- Communicate by shouting
- Operate within earshot and LOS
- Radios hard to hear
- Stop to use handheld CDAs

Solution: Interpret/disseminate/display time-critical combat information

- while looking ahead, hands on weapon, and on the move

Revolutionary approach to small unit C2 and Situational Awareness at the lowest echelon for hand-off of actionable combat information

ULTRA-Vis Program Gates

Phase 1: Critical Technology Demonstrations

Task a: Recognize hand and arm signals (gestures)

Task b: Create/display geo-registered icons from different perspectives

Task c: See icons in full sunlight conditions on see-through display

Task d: Conduct system design trade study and CONOPS development

Phase 2: Multi-Modal Testbed Demonstrations

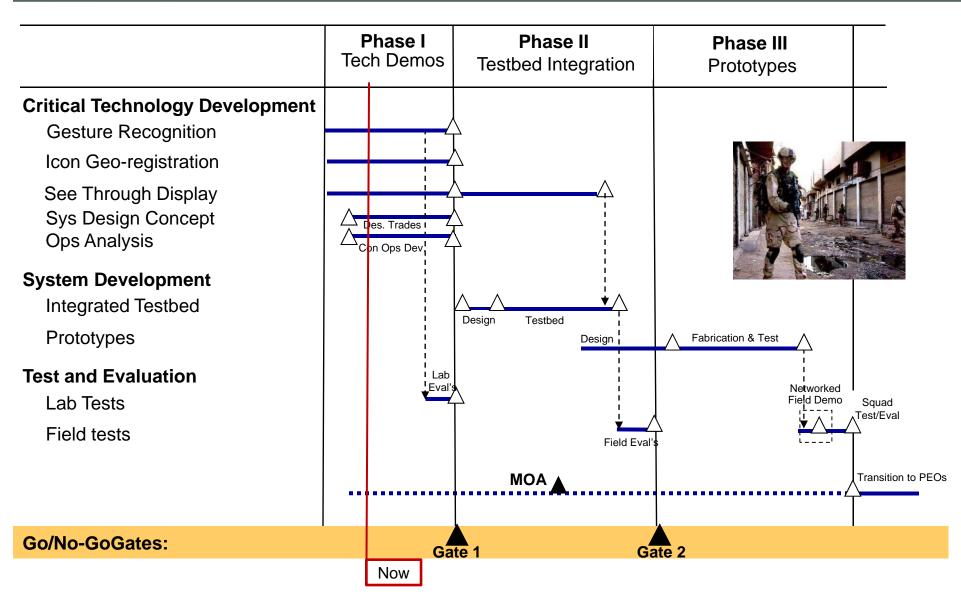
Task a: Display icons in 3 colors (R-G-B)

Task b: Integrate multi-modal testbeds for test and evaluation

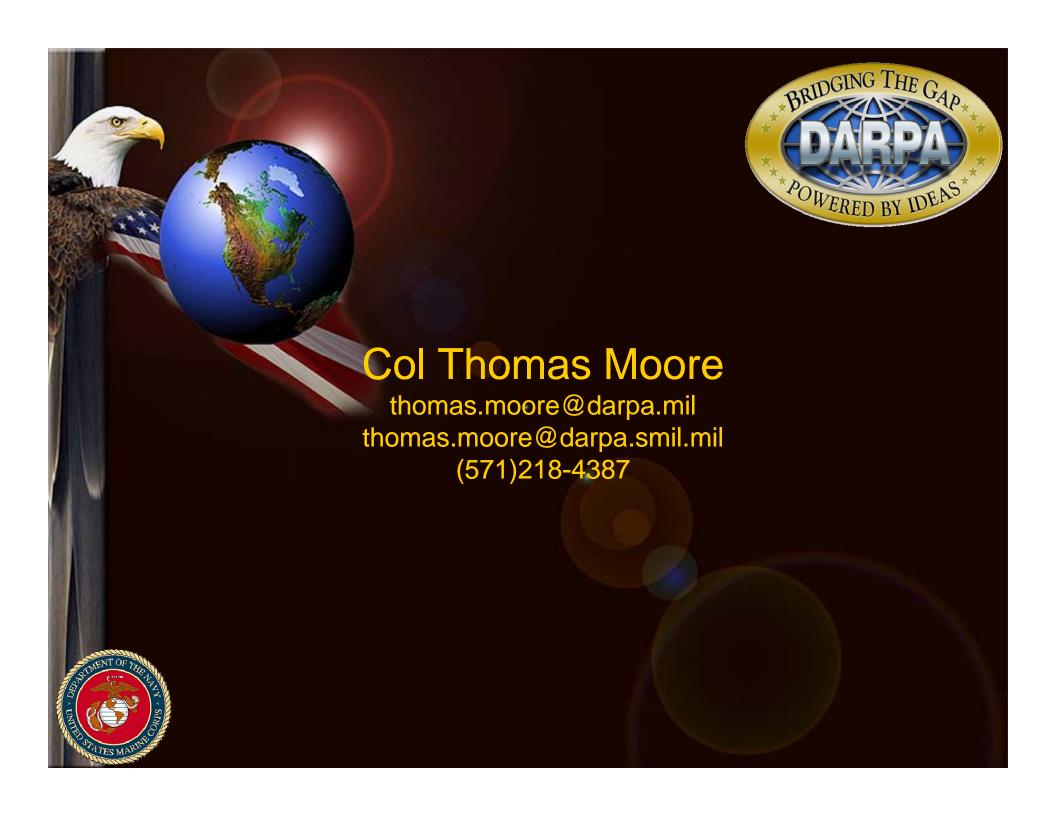
Task c: Support system test and evaluation

Phase 3: System Prototypes for Evaluation/Transition

Task a: Fabricate/test/demonstrate prototype units for transition


Task b: Support Service field evaluation

ULTRA-Vis Gate Metrics



Phase	Gate Rqmt	Operational Metric	Go/No-Go Criteria		
	Gesture Recognition	Recognize Leader's Standard Hand & Arm Signals	> 99% probability of correct recognition of at least 10 hand & arm signals < 1% False Alarms		
1	Geo- Registered Icons	Create/display geo-registered icons from Leader's pointing action on two see-thru displays	Placement Accuracy: < 10 mrad, angular accuracy (1m @100 m) < 0.1 m, range accuracy < 0.5 mrad, jitter @ 60 Hz update		
	See-Thru Display	See icons (monochrome) in full sunlight	≥2000 Ft-L brightness (monochrome) 40° FOV		
2	Integrated Multi-Modal Testbed	Create/disseminate command information using two, networked, Soldier-worn Testbeds with: - Head-Mounted Display - Navigation units - Audio interface (mic/headset) - Voice/Data Radio - Hand/Arm gesture interface - Tactile Cueing device	3-color (R-G-B) icons, ≥2000 Ft-L, 40° FOV > 99% probability of correct recognition (sender) and representation (receiver) of multi-modal commands (hand/arm gestures + voice) < 1% False Alarms		
3	Prototypes	Demonstrate system functionality with fifteen (15) prototypes for Transition	System weight (including battery): < 3 lbs System power: < 6 W		

USMC SharePoint site

- Info about unclas programs
- Collaborative site to interact with others in the USMC S&T community
- Calendar of upcoming events
- Weekly Activity Reports (WAR)
- Contact info for PM's
- To request access, send e-mail to: thomas.moore@darpa.mil or stephen.urban.ctr@darpa.mil

